Security, Privacy and the Future Internet

Prof. Dr. Michael Waidner
Outline

- Future Internet
- Security and Privacy
- Security and Privacy by Design
Internet of People, Data, Services, Things, ... and Crime & War

Cloud-delivered IT & Business Services

Globally interconnected cyber-physical system

Online Social Networks

Cloud-delivered Crime & War

© Fraunhofer-Gesellschaft 2011
Overall, Security is Becoming More *Difficult*

- Future Internet is the ideal target: everybody, everything is online
- Professionalization and industrialization of cybercrime and cyberwar
- Network of people and user-generated content
 - Privacy (in public spaces …)
 - Intellectual property
 - Filtering illegal and dangerous content
 - Withstanding censorship
But Security may Also *Benefit* from the Future Internet

- **Better security through standards, automation, services**
 - Cloud will lower costs for good and well-managed security and privacy
 - Today, poor service management (governance, change, patch) is key source of insecurity!

- **Global scale, global economy may enable global standards**
 - Trust and identity infrastructures
 - Privacy and information sharing
 - Assurance, auditing, forensics
Outline

- Future Internet
- Security and Privacy
- Security and Privacy by Design
A Slightly More Technical View: Security Problems

- New technologies, new threat vectors
 - Massive resource sharing in clouds
 - Mobile and ambient as new access channel
 - Cyber-physical convergence
 - Global connectivity without global identity

- Old principles don’t apply anymore
 - Perimeter security vs. service decomposition
 - Trusted base vs. *everything* in the cloud
 - Managed endpoint security vs. consumerization
 - ...
Some Security Research Challenges

- Research pipe full of untested results
 - Crypto, trusted computing, provenance, sticky policies, automated checking, ...

- More applied research
 - Security for legacy systems, networks, ...
 - Unexpected intrusions, abuses, insiders
 - Accountability with privacy
 - Forensics with privacy
 - Quantification of risks and security

- Create a network to fight a network
 - Cross-org sharing of security information

- Commons nature of security
Privacy in the Future Internet

- Privacy is difficult to define
 - What is the €-value of your personal information?
 - What is privacy in a public space like an OSN?
 - Tradeoffs are always individual

- Status
 - **Purpose Binding**: responsible data management – mostly mature
 - **Data minimization**: crypto and data management – no practical experience
 - **Context binding**: not even well defined
 - **Sustainable informational self-determination**: no good solutions
Some Privacy Research Challenges

- **What is privacy in ...**
 - OSN, location, ambient, mobile, cloud, smart grids, ...
 - Mental models for usability

- **Research pipe full of untested results**

- **Standardization**
 - Portable id, pseudonyms, options, expiration dates, ...
 - Globally practical trust and identity framework

- **More applied research**
 - Privacy *despite accountability*
 - Privacy *despite forensics*
 - Computing with encrypted data

- **Commons nature of privacy**
Outline

- Future Internet
- Security and Privacy
- Security and Privacy by Design
Building a Secure System

- Huge body of engineering knowledge
- Many articles, books, courses, degrees, tools, ...
- So, in theory, this should be doable
Building a Secure System

State of the art in the software industry

But # of vulnerabilities is still going up

A more detailed look shows:
- Same errors again and again
- IT people lack skills
- Current processes and tools are too complex for humans

Source: Microsoft Secure Development Lifecycle

Source: IBM X-Force, 2011
Which one is Better: “by design” or “by patching”

<table>
<thead>
<tr>
<th>Security and Privacy by Design</th>
<th>Security and Privacy by Patching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall: economic</td>
<td>Overall: expensive</td>
</tr>
<tr>
<td>▪ High initial costs</td>
<td>▪ Low initial costs</td>
</tr>
<tr>
<td>▪ Low recurring costs</td>
<td>▪ High recurring costs</td>
</tr>
<tr>
<td>Avoids damage</td>
<td>Damage might be irreversible:</td>
</tr>
<tr>
<td></td>
<td>▪ Life and health</td>
</tr>
<tr>
<td></td>
<td>▪ Critical infrastructure</td>
</tr>
<tr>
<td></td>
<td>▪ Privacy, reputation, confidentiality</td>
</tr>
</tbody>
</table>

NIST 2010:
- 80% of development costs spent on finding and fixing errors

IBM 2010: Fixing a single defect during ... costs:
- Coding: $80
- Build: $240
- QA/Test: $960
- Post release: $7’600 + reputational costs

European Center for Security and Privacy by Design (EC-SPRIDE)
Projected start: October 1st, 2011
What needs to be done

Challenges

- Consistent models throughout all phases
- Patterns for requirements analysis
- Model-driven security (design, test)
- Static and dynamic analysis
- Usability: end users, developers, admins
- Ready to use building blocks
- Demonstrable and quantifiable improvements in security
- Applied to interesting cases: cloud computing, embedded, ...
- Education for ordinary developers
Outline

- Future Internet
- Security and Privacy
- Security and Privacy by Design